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Based on a rigorous extension of classical statistical mechanics to networks, we study a specific microscopic
network Hamiltonian. The form of this Hamiltonian is derived from the assumption that individual nodes
increase or decrease their utility by linking to nodes with a higher or lower degree than their own. We interpret
utility as an equivalent to energy in physical systems and discuss the temperature dependence of the emerging
networks. We observe the existence of a critical temperature Tc where total energy �utility� and network
architecture undergo radical changes. Along this topological transition we obtain ensemble averages of scale-
free networks with complex hierarchical topology. The scale-free nature emerges strictly within equilibrium,
with a clearly defined microcanonical ensemble and the principle of detailed balance fulfilled. This provides
evidence that “complex” networks may arise without irreversibility. The utility approach establishes a link
between classical statistical physics and a wide variety of applications in socioeconomic statistical systems.
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I. INTRODUCTION

Triggered by the vast number of nontrivial networks ob-
served in nature, a respectable number of models has been
introduced recently to understand their statistical properties.
Many of these networks differ considerably from pure ran-
dom graphs �1�, leading to the notion of complex networks
which is a well established concept nowadays �2,3�. Perhaps
the most apparent property distinguishing “complex” real-
world networks from pure random graphs is their scale-free
degree distribution P�k��k−�, which seems to be ubiquitous
in nature �3,4�. Further, many real-world networks exhibit a
high amount of clustering, and sometimes even a nontrivial
dependence of the clustering coefficient, Ci of node i, when
seen as a function of its degree ki. A power form of �C�k��
�k−� can be associated with the “complex” topological
property of hierarchical clustering �5�. Almost all of the mi-
croscopic models proposed to describe such “complex”—
growing or static—networks involve nonequilibrium and
evolutionary elements, manifesting themselves in different
procedures of preferential attachment �6–9� or other struc-
tured rewirement schemes �10–12�. Further, these procedures
often involve the need for nonlocal information.

Aiming at a statistical description of complex networks,
generalized concepts of preferential attachment have been
applied in the definition of network ensembles with fixed
degree distribution �13,3�. Another way of generating scale-
free networks which is based on appropriately tuning “mac-
roscopic” weights of “network-Feynman graphs” �14� can be
related to this approach. Other views of ensembles of net-
works include generalizations of random graphs to networks
with arbitrary degree distributions via methods of supersta-
tistics �15�. So far, comparatively little has been done to
understand complex networks from a purely classical statis-
tical mechanics point of view where phase space is not con-
strained. Clearly, its possible foundations on, e.g., the maxi-
mum entropy principle would allow for a very broad range
of applications. A few serious equilibrium approaches have
been proposed �16–18�, where topological properties of net-
works associated with specific Hamiltonians have been stud-

ied. In �16� an equilibrium partition function of the form �2�,
see below, was established, giving an arbitrary degree distri-
bution. In �18� it was shown that along topological transi-
tions scale-free networks can be recovered at a certain point
in time during a relaxation process to equilibrium, implying
that scale-free graphs are temporary configurations not typi-
cal for equilibrium.

The aim of this paper is to present a form of a network
Hamiltonian leading to ensemble averages of networks
which correspond to distinct “phases” of networks, depend-
ing on the temperature of the system. By increasing tempera-
ture we observe a transition from starlike to scale free to
eventually Poissonian networks. In addition to previous
work, we present numerical evidence that scale-free net-
works may indeed be obtained within a pure equilibrium
approach as suggested in �16�. Moreover, we demonstrate
that the introduced Hamiltonian leads to nontrivial hierarchic
features. The form of the Hamiltonian is derived from simple
and general assumptions about individual utilities of nodes,
in a way that is standard in economics. Nodes act as utility
maximizers, in analogy to physical systems minimizing en-
ergy.

II. MODEL

We consider symmetric networks with a fixed number of
distinguishable nodes i=1, . . . ,N, connected by a fixed num-
ber of �=1, . . . ,L indistinguishable links. The network is
represented by its adjacency matrix c, where cij =1, if a link
connects nodes i and j and cij =0, otherwise; there are no
self-connections or multiple edges. Thus we define the mi-
crocanonical partition function as

��E,N,L� = �
P�c�

1

L!
�„E − H�c�…�	L − Tr
 c2

2
�� , �1�

with H�c� being the network Hamiltonian. P�c� denotes all
permutations of links in a N�N adjacency matrix. The num-
ber of links is fixed by the term �(L−Tr�c2 /2�), so that the
sum finally extends over all permutations of L links which
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are possible in a N�N adjacency-matrix. The canonical par-
tition function may be obtained by the Laplace transform of
Eq. �1�, or via the maximum entropy principle, as shown in
�17�,

Z�T,N,L� = �
P�c�

1

L!
�
L −

Tr�c2�
2

�e−�H�c�, �2�

using the usual definition of temperature T1/�. In simula-
tions the canonical ensemble can be generated, e.g., by the
Metropolis algorithm: Starting from an adjacency matrix c at
time t, a graph ĉ is generated by replacing a randomly chosen
edge between nodes i and j with a new edge between ran-
domly chosen, previously unconnected, nonidentical nodes
m and n. In the next time step c is replaced by ĉ with prob-
ability preplace=min�1,exp�−�(H�ĉ�−H�c�)��. Differing
from structured rewirement schemes as used in �10�, this
procedure guarantees that every possible configuration of the
adjacency matrix is realized with the same a priori probabil-
ity.

Given Eq. �2� any reasonable Hamiltonian depending on
any properties of the network can be studied. Here, we adopt
the view of modeling microscopic interactions, where the
total utility of a network can be expressed as the sum over all
utility contributions of individual nodes, Ui.

In the spirit of utility theory, Ui is a function which de-
scribes the preferences of nodes between different alterna-
tives �19,20�. In our case these alternatives are the different
possibilities for establishing links. Therefore, node utility
will depend on properties or states �i of node i itself, and on
properties of the node j, � j, whereto a link is going. For
simplicity we assume linearity and define the utility of a link
l �which connects nodes i and j� as

u���i,� j� = Ui��i,� j� + Uj��i,� j� . �3�

In the following we specify the model such that the utility of
a node increases if it connects to a node that is “more impor-
tant” than itself. Similarly, its utility decreases if it estab-
lishes a �potentially costly� link to a “less important” node.
As the argument of the individual utility functions Ui we
therefore take the relative importance between two nodes,
defined via �k�ki−kj�, which is the most obvious measure
satisfying the specification above.

For the functional form of the utility function we chose a
standard, monotonically increasing, concave utility function,
which incorporates the concept of decreasing marginal util-
ity, U= �x	−1� /	. One of the most used variants of this util-
ity in economics and social sciences is the limit, 	→0, the
log utility �19�. We thus model node utility by

Ui�ki,kj� = �c1 + a1 ln�b1 + �k� for kj 
 ki,

c2 − a2 ln�b2 + �k� for kj � ki,
� �4�

with shape parameters a and b, and offsets c. To avoid dis-
continuity in the utility function we set c2=c1+a1 ln�b1�
+a2 ln�b2�. This function is shown in Fig. 1. For the sake of
further simplicity, we assume b1=b2=b, to obtain a particu-
larly simple form for the link utility,

u��ki,kj� = c + �a1 − a2�ln�b + �k� . �5�

Parameter cc1+c2 can be chosen to ensure positive total
utility for each link. Parameter b is the curvature of the util-
ity function. Equation �5� can be interpreted as the inverse
energy contribution of each link. Simulations of the associ-
ated maximum entropy ensemble, Eq. �2�, can now be per-
formed. The collective amount of “irrationality” of indi-
vidual nodes is captured by the “temperature” T �bounded
rationality�. For a1=a2, utility is independent of �k and ran-
dom networks are obtained, as expected. For a1�a2, the
constants a and c can be absorbed in the temperature scale of
the system; hence they are omitted in the following without
loss of generality. Assuming a1
a2, i.e., putting more em-
phasis on wins than on losses, we finally base our simula-
tions on the Hamiltonian,

H�c� = − �
�

ln�b + �k� . �6�

III. RESULTS

We simulate networks of the canonical ensemble, Eq. �2�,
ranging from N=500 to 104 nodes. For computational rea-
sons, temperature-dependent results are presented for N
=103. All ensemble averages have been calculated from at
least 2�103 configurations, separated by at least 20�N up-
date steps. We analyze the obtained networks as a function of
the model parameters—temperature �irrationality� T, link
density �=2L /N, and the “sensitivity” parameter b.

Figure 2�a� shows the ensemble average of the total en-
ergy of the system, U−�i=1

N Ui, as a function of T for dif-
ferent values of �. Also shown is the specific heat C, obtained
as the derivative of the energy. One clearly finds a radical
change in the energy and a characteristic maximum of the
specific heat at about Tc�0.84 for N=1000, indicating the
presence of a critical point. The transition softens for higher
link densities �, as well as for lower values of b �not shown�.
The question arises whether the observed transition is a
phase transition or a crossover. To clarify this point we per-
form a finite-size scaling analysis. The finite-size dependence
of the maximum of the specific heat, Cmaxmax�C�, and of

FIG. 1. �Color online� Node utility as a function of kj −ki for
different values of b. The parameters in Eq. �4� are a1=1, c1=10,
a2=0.5, and c2=1.5.
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the critical temperature Tc, for networks with size N with �
=3, are shown in Fig. 2�b�. The simulation data suggests that
the finite-size dependence of the maximum of the specific
heat is consistent with linear scaling Cmax�N1.0, within the
limits of observation. The finite-size dependence of the criti-
cal temperature shown in the inset of Fig. 2�b� suggests con-
vergence to a limit of Tc

�0.92. Even though the approxi-
mately linear increase of Cmax is undoubtedly evidence for a
phase transition, one has to be careful. For a first-order phase
transition a scaling Cmax�Nd is expected, whereas for a sec-
ond order transition one would expect Cmax�N	/�, where 	
is the critical exponent of the specific heat and � the critical
exponent of the correlation length. Thus conclusive state-
ments are difficult for two reasons: First, the definition of the
correlation length � on fluctuating networks, which are not
embedded in some metric space, is not clear. Any definition
of a correlation length and its finite-size scaling behavior will
depend on the chosen metrics. Second, the system is overex-
tensive with respect to �, which makes it hard to use standard
arguments from finite-size scaling. As long as neither the
effective dimension, d, nor the exponent for the correlation
length, �, can be reasonably estimated, we cannot decide
between the two cases. The only piece of evidence for a

phase transition is the direct measurement of Cmax as dis-
played in Fig. 2�b�.

The change in energy is associated with considerable re-
structuring of the underlying networks. To discuss this in
more detail we calculated ensemble averages of degree dis-
tributions along the transition; see Fig. 3. At low tempera-
tures networks are dominated by stars �i.e., nodes which are
linked to nearly all of the other nodes of the networks� of
different degrees. In this low-temperature regime the system
is dominated by the energy of the network and the entropy
plays a rather meager role. The energy resulting from the
Hamiltonian Eq. �6� is maximized when there are only a few
nodes with very large degree of the order of N; then, due to
the constraint �iki=2L the other degrees are small and hence
most of the individual energy contributions are of the order
ln�b+N�, so that the overall energy is approximately N ln�b
+N�. From T�0.5 upward, the starlike structure shifts to
lower degrees. At T�0.8 self-similar patterns emerge �Fig.
3�: The highest connected starlike structures are accompa-
nied by more interconnected stars of smaller, less favorable
degree to the left. This organization is mirrored in the struc-
ture of nodes of lower degree whose tail becomes power-
law–like. At Tc the situation inverts and energy changes dras-
tically: Thermal excitation surmounts the “repelling” �k
term when merging different zones of starlike structures; the
starlike phase ceases to exist. Still the network is organized
in a self-similar way—at T�0.95 the degree distribution fol-
lows a power law P�k��k−� with exponent ��3. �For a
larger system where the power law extends for an order of
magnitude more, see Fig. 4�a�.� As many statistical physical
systems lose their characteristic length scale at the phase
transition it is not surprising that the structure of a network,
measured by its degree distribution, becomes scale free.

Further temperature increase shifts the exponential cutoff
to the left, ultimately leading to random networks with Pois-
sonian distributions. In this high-temperature regime, where
�=1/T is small, the system basically does not depend on the
particular form of the Hamiltonian and network structure is
almost solely dominated by the entropy, as heat excitations
result in total randomness of the system; see Fig. 3.

Finite-size effects of the degree distributions and the role
of parameter b for the scale-free region are captured in Fig.

FIG. 2. �Color online� �a� Ensemble average of normalized in-
ternal energy U�T�=U�T� /min(U�T�) and specific heat C�T� �inset�
as a function of T, for N=103, b=5, and various densities �. �b�
Finite-size dependence of the maximum of the specific heat Cmax.
Points represent average values of Cmax over 50 identical, indepen-
dent computations of C�T�. Each point of a single C�T� curve was
obtained from averages based on 105 values. The line is a linear
least-squares fit Cmax�N1.0. The inset shows the associated finite-
size dependence of temperature, i.e., the location of the maximum
of Cmax.

FIG. 3. �Color online� Ensemble averages of degree distribu-
tions at different temperatures for N=103, �=3, and b=5. The line
for T=5 is the Poissonian p�k�=e−��k /k!, expected for random
graphs.
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4�a�. Sizes N=103 and N=8�103 are compared for b=1 and
b=5; both indicate scaling within the limits of observation.
Power-law fits yield a degree exponent of ��3 and 2.5 for
b=5 and b=1, respectively, regardless of system size. Varia-
tion of b therefore allows us to model different exponents
occurring in real-world networks �3�. The fact that the cutoff
of the degree distribution lies at lower kmax for b=1 than for
b=5 can be understood qualitatively when taking the b de-
pendence of Ui�ki ,kj� into account: As can be seen from Fig.
1, lower b results in a comparatively higher sensitivity at
small �k. Consequently, sensitivity at higher degree differ-
ences becomes more negligible �for the same system size N�
compared to the circumstances at, e.g., b=5.

In Fig. 4�c� we show the degree dependence of ensemble
averages of the cluster coefficient �Ci�= �2ni /ki�ki−1��,
where ni is the number of links between the neighbors
of node i. For T=0.85, we obtain scaling �C�k��=k� with
��−1. This is in very good agreement with many empirical
data on socioeconomic systems �5� and demonstrates that our
model reproduces the “complex” topological property of hi-
erarchical clustering found in many socioeconomical net-
works. In Fig. 4�c� one observes that for increasing tempera-
tures a plateau of constant C�k� is emerging for large k;
however, the exponent in the scaling region appears to re-
main rather robust at ��−1. We have checked this point
more closely in a N=8000 run at T=0.95 �not shown�. The
existence of self-similar, “complex” hierarchical structures
can be associated with the �k term in the utility function.
Actually, this specific form leads to a significant correlation
of degrees which can be understood when looking at the
dynamics imposed by the Metropolis algorithm more
closely: If the Hamiltonian H depends on the degrees of both
nodes, H�=H�ki ,kj�, the correct expression of the energy
exchange �E=H�ĉ�−H�c� associated with a random rewire-
ment ��i , j�→��m ,n� is given by

�E = H�km + 1,kn + 1� − H�ki,kj�

+ �
���i,j,m,n�

�
��N���

�H�k̂�,k�� − H�k�,k��� , �7�

as long as nodes m and n and/or nodes i and j are not neigh-
bors of each other; if they are neighbors the expression is
somewhat more lengthy. � runs over the involved nodes,

N��� denotes the neighbors of node �, and k̂� is the “new”
degree of node � �i.e. the degree after rewirement�. The con-
tribution H�km+1,kn+1�−H�ki ,kj� is given by ln(�b
+�kij� / �b+�kmn�), thus making clear how the parameter b
governs the strength of the influence of degree difference. It
is also clear that this contribution drives the system to reduce
link differences, i.e., the system shows an assortative ten-
dency. The secondary sums in Eq. �7� can be written as

�
��N���

− ln
1 ±
1

b + �k��
� . �8�

Here the sign is positive �negative� for nodes � where a link
is added in the case of k�
k� �k��k�� and positive �nega-
tive� for nodes where a link is removed for the case k��k�

�k�
k��. The sum over N��� in Eq. �8� has k� elements and is
thus dominated by some kind of “preferential attachment.”
Additionally, it can be easily checked that the secondary term
favors disassortative tendencies. The correlation resulting
from Eq. �8� couples the cluster coefficient Ci to the degree
ki and results in a hierarchic organization of the network
resembling the well known �=−1 slope for many real-world
data. As expected, the secondary terms dominate the overall
behavior of the clustering coefficient as a function of degree,
see Fig. 4�c�.

The results presented so far hold qualitatively for rela-
tively small �. For � larger than 5, a characteristic scale
gradually emerges, due to the fact that the mean �k�, corre-
sponding to high-temperature random networks, shifts to

FIG. 4. �Color online� �a� Finite size dependence of the
ensemble-averaged degree distribution for various N and b �inset� at
�=3. For b=5, we have T=0.95, being somewhat higher for b=1.
�b� Averaged degree distributions for different link densities �, N
=103, and b=5. Temperatures are adjusted to be in the scale-free
region. �c� Degree dependence of the average cluster coefficient
�C�k�� at different temperatures. N=103, �=3, and b=5. Plots are
normalized to the first point.
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larger values. Despite this characteristic scale, for an appro-
priate temperature window, the power law with the charac-
teristic exponent of �=3 remains, Fig. 4�b�. For ��1/2 the
networks contain only very few links. The transition gets
very sharp and we were not able to find a regime of scale-
free networks. Still, the transition between random networks
and a starlike phase is visible.

Finally, we mention that the computation of the energy
associated with relinking is computationally expensive since
it involves a number of secondary terms, some of them given
in Eq. �7�: A number of k� contributions have to be reevalu-
ated for each node participating in the rewirement, which
makes simulations demanding at T→Tc. This fact imposes a
limit on our analysis to networks of N�8000 nodes.

IV. CONCLUSION

We proposed a very general model of socioeconomical
statistical systems, where individuals are utility maximizers
with bounded rationality. We found that—for low link
densities—scale-free networks with hierarchical clustering
naturally emerge as maximum entropy expectation values in
the vicinity of a critical point. We argue that the hierarchical
clustering results from degree correlations, which are under-
standable from the form of the chosen Hamiltonian. Further,
different from work conducted earlier, no modifications of
the sampling of phase space have been used and the degree
distribution was not predefined by macroscopic weights, or
similar approaches. Our results emphasize that scale-free net-
works also exist within a pure equilibrium concept, in addi-
tion to �18� where they have been reported as a transient

relaxation phenomenon. It is also important to point out the
generality of our results from a socioeconomic point of view.
The Hamiltonian has been derived from the most frequently
used utility functions in economics. Similar utility functions
like U= ��b+�k�	−1� /	 �see �19�� do not change our results
qualitatively for small 	.

We further showed the existence of different phases of
network structure. We find numerical evidence for a first-
order transition, however, for conclusive statements a renor-
malization analysis of the matter would be needed, which is
beyond the scope of this work.

We think that it would be interesting to investigate sys-
tems of opinion formation on networks within the proposed
approach of identifying the network Hamiltonian with indi-
vidual utilities, i.e., to couple internal degrees of freedom to
the network ensemble, Eq. �2�, by methods of statistical me-
chanics. This would allow us to juxtapose nonequilibrium
models of opinion formation or equilibrium models on
“hard-wired” networks with results from a maximum entropy
ensemble of scale-free networks. Of course, such a juxtapo-
sition would not be possible in an unbiased way when taking
nonequilibrium network formation processes into account.

Finally, as the notion of complexity is usually tightly con-
nected to dissipative structures far from equilibrium, our re-
sults could stimulate a discussion about the actual complex-
ity of “complex” networks.
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